翻訳と辞書
Words near each other
・ Greenwoodochromis bellcrossi
・ Greenwoodochromis christyi
・ Greenwoods
・ Greenwoods Corner, New Zealand
・ Greenwood–Hercowitz–Huffman preferences
・ Greenwood–Leflore Airport
・ Greenwreath
・ Greenwyck, Wisconsin
・ GreenXC
・ GreenXchange
・ GreenZap
・ Greenzo
・ Green–Davies–Mingos rules
・ Green–Kubo relations
・ Green–Schwarz mechanism
Green–Tao theorem
・ Green–white–checker finish
・ Green’s Balloon at Newcastle
・ Greeper laces
・ Greer
・ Greer (surname)
・ Greer Airport
・ Greer and Jennie Quay House
・ Greer Barnes
・ Greer County, Oklahoma
・ Greer County, Texas
・ Greer Depot
・ Greer Downtown Historic District
・ Greer Field at Turchin Stadium
・ Greer Garson


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Green–Tao theorem : ウィキペディア英語版
Green–Tao theorem
In number theory, the Green–Tao theorem, proved by Ben Green and Terence Tao in 2004,〔.〕 states that the sequence of prime numbers contains arbitrarily long arithmetic progressions. In other words, for every natural number ''k'', no matter how big, there exist arithmetic progressions of primes with ''k'' terms. The proof is an extension of Szemerédi's theorem.
==Statement==
Let \pi(N) denote the number of primes less than or equal to N. If A is a subset of the prime numbers such that
: \limsup_ \dfrac>0,
then for all positive integers k, the set A contains infinitely many arithmetic progressions of length k. In particular, the entire set of prime numbers contains arbitrarily long arithmetic progressions.
In their later work on the generalized Hardy–Littlewood conjecture, Green and Tao derived the asymptotic formula
: (\mathfrak_k + o(1))\frac
for the number of ''k'' tuples of primes p_1 < p_2 < \dotsb < p_k \leq N in arithmetic progression. Here, \mathfrak_k is the constant
: \mathfrak_k := \frac1\left(\prod_\fracp\left(\frac\right)^\right)\left(\prod_\left(1 - \fracp\right)\left(\frac\right)^\right).

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Green–Tao theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.